Problem 5140. Given equilateral triangle $A B C$ with an interior point P such that $A P=22+16 \sqrt{2}, B P=13+9 \sqrt{2}, C P=23+16 \sqrt{2}$. Find $A B$.

Proposed by Kenneth Korbin, New York, NY
Solution by Ercole Suppa, Teramo, Italy

Denote $A P=x, B P=y, C P=z, A B=a, \angle P A B=\phi$. In the triangle $A B P$ we have

$$
\begin{equation*}
2 a x \cos \phi=x^{2}+a^{2}-y^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta=[A B P]=\frac{1}{2} a x \sin \phi \tag{2}
\end{equation*}
$$

The law of cosines in triangle $A P C$ yields

$$
\begin{align*}
z^{2} & =a^{2}+x^{2}-2 a x \cos \left(60^{\circ}-\phi\right) \\
z^{2} & =a^{2}+x^{2}-a x(\cos \phi+\sqrt{3} \sin \phi) \\
2 z^{2} & =2 a^{2}+2 x^{2}-2 a x \cos \phi-2 a x \sqrt{3} \sin \phi \tag{3}
\end{align*}
$$

If we substitute (1) and (2) into (3) we get

$$
\begin{align*}
2 z^{2}=2 a^{2}+2 x^{2}-\left(x^{2}+a^{2}-y^{2}\right)-4 \sqrt{3} \Delta & \Rightarrow \\
4 \sqrt{3} \Delta=a^{2}+x^{2}+y^{2}-2 z^{2} \quad \Rightarrow & \\
48 \Delta^{2}=\left(a^{2}+x^{2}+y^{2}-2 z^{2}\right)^{2} & \tag{4}
\end{align*}
$$

From (4), by using the Heron's formula, after some algebra, we have

$$
a^{4}-\left(x^{2}+y^{2}+z^{2}\right) a^{2}+x^{4}+y^{4}+z^{4}-x^{2} y^{2}-x^{2} z^{2}-y^{2} z^{2}=0
$$

By putting $a^{2}=t$ and bearing in mind that

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=2368+1674 \sqrt{2} \\
x^{4}+y^{4}+z^{4}-x^{2} y^{2}-x^{2} z^{2}-y^{2} z^{2}=948103+670410 \sqrt{2}
\end{gathered}
$$

we obtain the following equation:

$$
\begin{equation*}
t^{2}-2(1184+837 \sqrt{2}) t+948103+670410 \sqrt{2}=0 \tag{5}
\end{equation*}
$$

The solutions of (5) are $t=13(17+12 \sqrt{2}), t=2147+1518 \sqrt{2}$, from which we obtain $a=\sqrt{13}(3+2 \sqrt{2})$ and $a=33+23 \sqrt{2}$. Since P is interior to the triangle $A B C$, it follows that $A P<a, B P<a, C P<a$. Consequently the only acceptable solution is $a=33+23 \sqrt{2}$. This completes the solution.

